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"ABSTRACT

In this report, which consists of two parts, the problem

of radar target detection in a background of non-stationary

external interference is considered. The object of the analysis

is to treat this problem from the point of view of statistical

1- * decision theory, and to derive a signal processing algorithm

which accepts the totality of inputs on which final decision is

K to be based, and perfor-ms both in--erference suppression and

target detection. It is assumed that the radar is provided with

multiple RF input channeis and that target-free samples, from

range gates other than the one in which a target is being sought,

can be used for the estimation of the interference statistics.

In Part I a general formulation is given and a likelihood

ratio detection rule is derived. The probabilities of detection

and false alarm '-Are evaluated exactly and the performance of the

test is illustrated numerically. In Part II, a more specific

interference modeo is introduced, which gives a more realistic

representation of the situations likely to be encountered in

practice. A decision rule is derived which approximates the exact

likelihood ratio tr.st for this case, and approximations for the

detection .nd false alarm probabilities are found.
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PART I

(1) INTRODUCTION

This two-part study is devoted to certain aspects of the

problem of radar target detection in a background of external

interference which is non-stationary in character. In many

discussions of this problem, interference rejection is treated as

a distinct stage of the processing, target detection taking place

as a subsequent operation. .ýt is the object of the present

analysis to deal with this problem in a unified way, leading to a

single algorithm which accepts the totality of inputs on which

final decision is to be based, and performs both suppression of

interference and target detection.

The physical means with which a radar copes with

interference, which usually take the form of multiple RF input

uhani•els and target-free data which can be used for the

estimation of the interference statistics, are taken as givens.

The target-free data is assumed to be provided by the samples

from range gates other than the one in which a target is being

sought. It is convenient to refer to the former as secondary

data, while the samples from the range gate being processed for

targets are called the primary data.

The analysis of Part I of this study is essentially a

generalization of that of the well-known paper(],) cf Reed,

Mallett and Brennan (RmB). These authors discuss an adaptive

I-'



procedure for the detection of a signal of known form in the

presence of noise (interference) which is assumed to be Gaussian,

but whose covariance matrix is totally unknown. The possibility

of signal presence is accepted for the primary data, while the

secondary inputs are assumed to contain only noise, independent

of and statistically identical to the noise components ot the

primary data. In the RMB procedure, the secondary inputs are used

to form an estimate of the noise covariance, from which a weight

vector is determined. This weight vector i.s then applied to the

primary data in the form of a standard colored noise matched

filter.

If tho output of this filter were compared to a threshold,

a complete detection procedure would b! obtained. However, no

predetermined threshold can be assigned to achieve a given PFA,

since the detector is supposed to operate in an interference

environment of unknown form and intensity. Instead, in the RMB

paper an analysis is given of the signal to noise ratio (SNR) of

this filter output, for given values of the secondary data. This

SNR i.j d fuzictiori the d a• ra 4 • •,-r _ •ndom

variable. The probability density function (PDF) of this SNR is

deduced, which has the remarkable property of being independent

of the actual noise covariance matrix; it is a function only of

the dimensional parameters of the problem.

In the present study, the problem is reconsidered as an

exercise in hypothesis testing, and the ad hoc RMB procedure is

1-2

I



replaced by a likelihood ratio test. No optimality properties are

claimed for this test, involving as it does the maximization of

two likelihood functions over a set of unknown parameters. The

form of the test is, however, reasonable, and the RMB matched

filter output appears as a portion of the likelihood ratio

detection statistic. This test exhibits the desirable property

that its PFA is independent of the covariance matrix (level and

structure) of the actual noise encountered. This is a general-

ization of the familiar constant false alarm rate (CFAK) behavior

of detectors using scalar input data, in which only the level of

the noise is unknown. In addition, it is shown that the effect of

signal presence depends only on the dimensional parameters of the

problem and a parameter which is the same as the SNR of a

conventional colored noise matched filter.

A brief outline of Part I of this study follows. The

detection problem is formulated in a particular radar context in

Section 2, where it is also pointed out that the actual

mathematical analysis is considerably more general in nature. The

likClihood rtotest is derived inS~tn I- w~hoyr ii- i'ý

compared to the RMB procedure mentioned above. In Section 4, the

general form of the test is discussed, and its basic properties,

in particular its CFAR property, are exhibited. The performance

of the test is treated in Section 5, where the probabilities of

detection and false alarm are obtained. This performance is

1-3



illustrated numerically in Section 6, which also contains a

discussion of the results. Supporting material, including an

alternate derivation of the RMB result, is provided in four

appendices.

The analysis in Part I is self-contained, dealing with a

single well-defined problem. A more specific (and more difficult)

version of the detection problem is addressed in Part II, in

which the results of Part I are freely used. The analytical

methods used here lean heavily on the techniques of the RMB paper

(which in turn is largely based on the analysis of Capon and

Goodman( 2 )) with the difference that the matrix transformations

required are carried out here directly on the variables of the

problem, so that much less reliance is placed on known properties

of the Wishart distribution.

1-4 ~i



(2) FORMULATION OF ThE PROBLEM

The mathematical secUti.ng for the formulation of this

detection problem will aczt-uaaly Oe quite general, but it is

introduced here first in a relatively specific way, in order to

lend concreteness by w•,y of example. Suppose that the antenna

system of a radar proides a number, say M, of RF signals. These

may be the outputs oi array elements, subarrays, beamformers or

any mix of the above. The radar waveform is supposed to be a

simple burst of identical pulses, say J in number, and target

detection is to be based upon the returns from this burst.

Further processin- is possible, of course, and the 'detections'

of the burst processor may be taken as inputs for subsequent

binary integration over a string of bursts. In any case, the

burst processor makes a decision, comparing some function of its

input data (called the detection statistic) to a threshold, and

the design of this processor is the same as if its decision were

to be the final one.

In effect, the radar front end carries out amplification,

filtering and reduction to base band, at which point the

quadrature signals are subjected to pulse compression, the final

stage of filtering. The order in which these things are carried

out is immaterial to the present model, since i.t is not addressed

to the problems of realization and channel matching, although

these are of great importance in practice. The in-phase and

1-5



quadrature output pairs are next sampled to form range gate

samples for each pulse, say, G range gates per pulse . This

results in a total of MJG complex samples for the burst. Signal

presence is sought in one range gate at a time, hence the primary

data consists of the MJ samples from a single, unnamed range

gate. These samples are arranged in a column vector, z, of

* dimension N =Mj. The secondary data consist of the outputs of K

range gates, forming a subset of the G-I remaining ones, and

Sthese are described by the set of vectors, z(k), (k = l...K). The

* decision rule will be formulated in terms of the totality of

* input data, without the a priori assignment of different

*i functions to the primary and secondary inputs.

The secondary data are assumed to be free of signal

components, at least in the design of the algorithm, and any

selection rules applied to make this assumption more plausible

are ignored. The primary data may contain z signal vector,

written in the form bs, where b is an unknown comnlex scalar

amplitude, and s is a column vector of N components describing

the signal which is sought. The modeled variation of signal

amplitude and phase among the array inputs is included in s, as

well as pulse to pulse variations, such as those relating to a

particular target doppler velocity. The problem of unknown

doppler, or other unknown signal parameters, is mentioned briefly

below. It should be noted that the signal vector, s, can be

I-6



normalized in any convenient way, since an unknown amplitude

factor is aiready included, and we retain the freedom to assign a

norm to s at a later point, where it will be most advantageous to

make a specific choice.

The total noise components of the data vectors,

representing all sources of internal and external noise and

interference, are modeled as zero-mean complex Gaussian random

vectors. The noise component of the primary vector, z, is

chl acterized by the unknown covariance matrix, M. Each of the

z(k) is assumed to share this NxN covariance matrix, and the

vectors z and the z(k) are all mutually independent. All Gaussian

vectors are assumed to have the 'circular' property usually

associated with I and Q pairs.

The key features of this model are the Gaussian

assumption, the independence of the primary and secondary inputs,

and the assumption that these share a conmnon covariance matrix.

The structure of the N-vectors, in particular the doubly indexed

model used to describe multiple pulses and multiple array

outputs, is not used in the following. One may equally well think

of J as being to unity, in which case the analysis corresponds to

a situation in which detection is based on the returns from a

single pulse.

1-7
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(3) THE LIKELIHOOD RATIO TEST

Consider a single input vector from the secondary data

set, say z(k). If the covariance matrix of this vector is M:

M = El z(k) z(k)l J,

then the N-dimensional Gaussian PDF of this complex random vector

will be

1 - z(k)t M- z(k)f[z(k)] M II

In the notation used here the double bars signify the determinant

of a matrix, and the superscript dagger symbolizes the conjugate

transpose of a vector. Each of the secondary data vectors has

this same PDF, and under the 'noise-alone' I-ypothesis, the

primary vector does so as well, hence the joint PDF of all the

input data is the product:

K

f 0 [z,z(1),...z(K)] = f[z] f[z(k)]

If v is any N-vector, we can write the following inner

product in the form of a matrix trace (Tr):

vt M-1 v = Tr(M- 1 V)

where V is the open product matrix

V = vvt

When this equivalence is applied to all the factors of the

joint PDF, it will be seen that the latter may be wri-tten in the

convenient form

1-8
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0 [z,z(1),..,z(K)] = 1T T K+1

Tr M I
where

( K
To K z + z(k) z(k)t).

Under the 'signal-plus-noise' hypothesis, the z(k) have

the same PDF as before, and the PDF of the primary vector is

obtained by replacing z by

z-E~zt -z-bs.

The resulting joint PDF of the inputs is then

f j[z,z(1)...,Z(K)] = 1 e- Tr(M T K+1

where now

K

T,=--- (z-~bs)(z-~bs)' + Kz z(k)t ()l

In the likelihood ratio testing procedure, the PDP of the

inputs is maximized over all unknown parameters, separately for

each of the two hypotheses. The ratio of these maxima is

the detection statistic, arid the hypothesis whose PDF is in the

numerator is accepted as true if it exceeds some preassigned

threshold. The maximizing parameter values are, by definition,

the maximum likelihood (ML.) estimators of these parameters, hence

the maxiirdiyed PDI'"s are obtained by replacing the unknowvn

p>arameters by their ML estimators.

1-9



We begin with the noise-alone hypothesis, maximizing over

the unknown covariance matrix, M. Of all positive definite M

matrices, the one which maximizes the expression inside the curly

brackets of this PDF is simply To. This i3 equivalent to the

statement that the ML estimator of a covariance matrix is equal

to the sample covariance matrix, which is well known( 3 ). When

this estimator is substituted in the PDF, the trace which appears

there becomes the trace of the NxN unit matrix, which is just N,

and we find

M ax fo = (0 )K+1M (e•)" liTo I

The same procedure, applied to the signal-plus-noise

hypothesis yields the formula

Maxfl=( 1 )K+1
M f1  (a F II Tfill

and it remains to waximize this expression over the complex

unknown signal amplitude, b. Since b) appears )only in this PDF, we

can form a likelihood ratio, L(b), at this point and subsequently

maxiniz,.o it over b. It is more convenient to work with the

(K+l)st root of this ratio, and we put

L(b) li(b),K+ .

Obvicusly,

•(b) = ILT9JI,

i 1--i



and the final l.)kelihood ratio test takes the form

Max I(b) = l- T II >
MrIIn T II

b

The threshold parameter on the right will evidently be greater

+-han unity, since the denominator on the left equals the

numerator for the choice b = 0, and we are maximizing over b.

To proceed, we define the matrix

K

S• = L z(k) z(k)l
k=1

which involves only the secondary data. This matrix is K times

the sample covariance matrix of these data, and it satisfies the

well-known Wishart distributiin. The only property of this

distribution that we neod here is the fact that for R > N, a

condition we no)w impose, the matrix b is non-singular with

probability one. S is, ot course, positive definite, and hence

Hermitian. We use a lemnma piroved in Appendix H to evaluate the

determinant~s of both sides of the equation

(Ki1) To = S zt

with the r-esult

(K41) N T0  S 11(1 + ZIS-'()

Similarly, we have

(K+I)N 11 1llI s +(1- (z-bs)1S-t(z-bs))

Now is a good time to rirnimi ze this quantity over b, and we

do tLlii, by (compljetirng the square:

* ~ ~ ~ ý .. .42" .-.



(z--bs)ts-'(.-bs) = (ztSl-z) + Ibl" (sts-'s) - 2 Relb (ztS-is)l

= (ztS- lz) + (sts- ls) b - (Sst Z) - St -

The minimum is clearly attained when the positive factor

containing b is .made to vanish, and the resulting likelihood

ratio is given by
1 + (z½s-z)

S= Max 1(b) - - -1 2

b 1 + (ztSl1Z) - Vs tS -1Z(Sts-1 S)

It is convenient to introduce the quantity n, defined by

I(sts-"z)12

1=(s s-) [1 + (ZtS-z)]

so that

I --. 'I°

Then the test

I > 40

is equivalent to the test
10 - i.

S> 7h( -=

We note that To lies between the values zero and one.

If the target model is generalized, so that the signal

vector still contains one or more unknown parameters (such as

target doppler), the likelihood ratio obtained above must next be

maximized over these parameters. It is clear that this is

1-12
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equivalent to maxixizing n itself over the remaining target

parameters. This maximization generally cannot be carried out

explicitly, and the standard technique is to approximate it by

evaluating the test statistic, in this case n, for a discrete set

of target parameters, forming a 'filter bank', and declaring

target presence if any filter output exceeds the threshold. Our

purpose in discussing this here is only to show how our test can

be generalized in this straightforward way, but from now on we

ignore any additional target parameters, which is equivalent to

concentrating on the performance of a single member of the filter

bank.

For comparison with the RMB procedure, we introduce M, the

ML estimator of the noise covariance, based on the secondary data

alone. We have already noted that this estimator is equal to

The likelihood ratio test can then be written in thi form

> K710

We not that the secondary inputs enter this test only through

the sample covariance matrix, M, and also that

(stl Z) = (;Vti7)

where w is the RMB weight vector

1-13
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WM s.

The RMB test itself is just

J(w^ z)l' > threshold,

which has the form of the colored noise matched filter test, with

M replacing the usual known covariance matrix of the noise.

The presence of the signal-dependent factor in the

denominator of the expression for n causes this detection

statistic to be unchanged if the signal vector is altered by a

scalar factor. Since the normalization of this vector has been

left arbitrary, this invariance is highly desirable. In effect,

this factor in the denominator is normalizing s for us, in terms

of the estimated noise covariance. The entire detection statistic

is also invariant to a common change of scale of all the input

data vecLuLr, a minimal CFAR requirement. Further properties of n

will be developed in the following section.

In the limit of very large K, one expects the estimator,

M, to converge to the true covariance matrix, M, at least in

probability. Moreover, it can be shown that the quantity

(ztMlz)

an inner product utilizing the actual covariance matrix instead

of its estimator, obeys the chi-squared distribution, with 2N

degrees of freedom, and hence this term, when divided by K,

converges to zero in probability, as K grows without bound. In

this sense the likelihood ratio test passes over into the

1-14
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conventional colored noise matched filter test, as the number of

sample vectors in the secondary data set becomes very large.

1-15



(4) PROPERTIES OF THE LIKELIHOOD RATIO TEST

The likelihood ratio test will be discussed in terms of

tt; random variable n, the decision statistic eventually obtained

in i,.i preceding section. The definition of n, as well as that of

tht m.iwtrix S on which it depends, are reproduced here for

coi i 'Jence:
I~~-lz)12

= s-7') [1 + (Zts-lz)]

K
S= L z(k) z(k)t.

k=1

The random variable n is, of course, a function of both the

primary and secondary data, and as a preliminary to discussing

its actual PDF, some useful properties are first derived. We

begin with the noise-alone case, and assume that the actual noise

covariance matrix is M.

The matrix M is positive definite, and hence a positive

definite square root matrix can be defined. Since M can be

diagonalized by a unitary transformation, it can be represented

in the form

M = UA

where the columns of the unitary matrix, U, are eigenvectors of

M, and A is diagonal. The diagonal elements of A, say X(n),

1-16



(n=l...N), are the real, positive eigenvalues of M. In case of

degeneracy of an eigenvalue, the corresponding eigenvectors are

assumed to have been orthogonalized. The square root may be

defined by the representation

Mi =UAhUt

where A1/ 2 is diagonal, with diagonal elements [X(n) ]1/2.

M- 1 / 2 is similarly defined in terms of A-1/ 2 , and it is

easily seen to be the inverse of MI/ 2 . Uniqueness of the square

roots is not necessary for our purpose, only their existence and

positive definite (hence also Hermitian) character.

Now consider the vector

•,=-M-iz,

and the similarly transformed secondaries

r(k) -- M-i z(k).

The new vectors are zero-mean Gaussian variables, but with

covariance matrix equal to IN, the NxN identity matrix. This

follows directly from the definitions:

El it -= M-h Elzz M- M-i M M- I ,

with identical reasoning for the transformed secondaries. The

linear transformation introduced here is, of course, a whitening

transformation.

We note that the scalar, n, depends on the data and signal

vectors only through inner products. By inverting the whitening

transformation we may evaluate, for example, the product

1-17



(ztS-'z) = (?t MiS-'Mi)- (1t (M-SM-•-y ,)

We define the new matrix

Y -- hM-sM-M

ano substitute for S, finding

K K
Y= Z M 4 z(k) z(k)t MCb = k(k) 1 (k)t

k=1 k=1

Therefore, the new S-matrix is K times the sample covariance

matrix of the whitened secondaries, and the random variable

E M (•S-lz)= (1ty-A)

is seen to be independent of M, being expressible as a function

of K+l independent Gaussian vectors, each of dimension N, and

each sharing the covariance matrix, IN. The PDF of Z, like thac

of the RMB signal-to-noise ratio, is therefore a universal

function of the dimensional parameters, N and K, alone.

The other inner products in the decision statistic

are handled in an analogous manner; thus

(StS-'z) = (stMi-'l,) = (jtg-1 )

where t stands for the whitened signal vector

4 :a Mis .I
At this point we make the deferred definition of signal

normalization, by taking t to be a unit vector:

(it j) = (8t M- s) % I

This choice gives specific meaning to the signal amplitude

1-1.8



parameter, b, whose square is now a proper signal-to-noise ratio,

for which we introduce the symbol a:

a ,bj1 = (Ejz"tMM1Eiz.).

When the obvious substitutions are made in the final inner

product, we obtain

= (4 t4~) 1 + (?1 t~yl 1 )

The dependence on M is now confined to t, and it will be shown

below that even this dependence on the true covariance matrix is

illusory. When a signal is present, z is replaced by

z - bs + n

where n has all the properties attributed to z in the noise-alone

case. In this situation, the whitened data vector is

where = Mlhz =bi .+ v/
where

which is statistically identical to the whitened data vector in

the noise-alone case. We have therefore found that when signal is

present, the PDF of n depends on M only through b and t, and the

dependence on the unit vector, t, is again only apparent, as we

now proceed to show.

Suppose the whitening transformation is followed by a

unitary one, in which the whitened vectors are expressed as the

1-19
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products of a unita-y matrix and a new set of random vectors.

These new random vectors are statistically indistinguishable from

their predecessors, and it would only be confusing to introduce a

new notation for them. Tracing this transformation through the

'nner products, we find that only the normalized signal vector is

changed: t is replaced by

where U1 is the unitary matrix characterizing this last

transformation. Any unit vector in the complex 14-space can be

*( realized, as tI, by such a transformation. In particular, we

* can cause tl to be a 'coordinate vector', for which a single

element is unity, the remaining (N-l) elements vanishing. It is

for this reason that the PDF of n depends on M only through the

meaning of the signal amplit~ud. parameter, b. In fact, this PDF

can depend only on b, N and K, and hence the false alarm

probability of the likelihood ratio detector, namely
PFA = Probi 7> 7i01

"* is independent of M, and this is the generalized CFAR property

claimed in section 1.

"1-20

IL ---- _ , ... • - .-- •?.• .?.i---.•. -- -i..•i -: -. - -• <•-?-i ) -? ) ') •i.i-).) 'l . .'. .i._. . -- . ' -. . ' . -. •.-



(5) PROBABILITY DISTRIBUTION OF THE TEST STATISTIC

We now take advantage of our freedom to make a unitary

transformation, and choose for tI a vector whose first element

is unity, all others being zero. This can be accomplished by

choosing for U1 a matrix whose first row is the conjugate

transpose of t, and whose other rows are the conjugates of unit

vectors orthogonal to t. Understanding that this choice has been

madc, we drop the subscript on t, so that n is still given by the

formula of the preceding section.

This form for t makes it expedient to decompose all

vectors into two components, an A-component consisting of the

first element only, and a B-component consisting of the rest of

the vector. Thus we write

IA

where the A-component is a scalar and the B-component is an

(N--l)-vector. In this notation, the signal vector is just

the zero being (N-1) dimensional. Matrices are decomposed in

analogous fashion, and we write

Note that the AA-element is a scalar, the BA-element is an (N-i)

I 21

. . . . .



dimensional column vector, and so on. We also give a name to the

inverse of this matrix, decomposing it as well:

. = BA YG: I
With this notation we have, simply,

( =AA

while
r 0 iF

(~t~fA1 )=[lQ PAA YAB gA
utiL-l?) 'B [JL

= 7 AA tA + YA I-, '

It is important to keep in mind that we now have a four-fold

decomposition of the total input data set into primary and

secondary vectors, each of which is divided into A- andi

B-components.

According to the Frobenius relations for partitioned

matrices,

7
E)AA = (Y~AA -f6 5 -AS e'B S)

which is a scalar, and also

YIA = m -y1 IAYAA

Since the NxN sample covariance matrix and its inverse are

Hermitian, we obtain
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PAS r: PSA = -SAAU AU U-

and therefore

(* AA (?A -ft t

The final inner product is expanded as follows:

(it,- ,) = ,,.IAI' + 2 Roj.;P'jrj + (.t 7 1 )

where we have applied the identity

(utv) = Cvtu)°

to the (N-i) dimensional inner product

Next, we complete the square in this last expression, writing

(,tr-,) + 'IDI + &A- ,

+ ' P( - • ',,,, S,)

and by using a Frobenius relation in reverse we see that

%, - .%-IMAf,, = ,.-

Finally, combining tLhese results, we find

When these evaluations are substituted into our expression

for n, the result can bu expressed in the apparently simple fornu
x

We have introduced here the notation

whith will be rotainud, arid the temporary notation,
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X -"AAI'A - -"Ald2UEI

Note that ZB is just like the quantity , defined earlier,

except that the dimensionality of the vectors involved is now

N-i. The last form of the decision test, namely

71 > 7)o

is evidently equivalent to
X > no(+•

1 - Tif

We shall leave the test in this form for a time, while we examine

the statistical properties of the quantities which enter into

it.

A previous evaluation for the leading factor in X can be

used to obtain the following form:

: :-- ,I-- •

.. a - S~&e" "C

W- make use of the definitions to express the denominator as a

*'I'h im it thu .'L;ainu as5 tne suPI of squlares

K

,?A,(k) - ,JA1,YB*k)

bucause thu turfS iwUI).lIi ed to coi(j)1i-utcL tbi.j square add Up to
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K

K A_(k) Y- ADJ3 o-4t5 (k)) (YrA..rh.-lIsk))*

K K
-- L IAOk)I"(k)tJg1-Y1 ,, A I >- 7"9(k)y'3(k)fl'fl,

k=l k=1

-1.9'8 -yjDA 1 YjOY½fN = 0

The evaluation of the sums here follows from the definitions of

the partitioned matrix elements. We introduce the notation

y(k) M(k) -

for the terms of the sum, and the analogous notation

Y 1 kA - -qAY*-Ito

for the quantity appearing in the numerator of X, so that the

likelihood ratio test can be written in the more explicit torir

iw > > (1
I =-_ ,/(k)l, -1 -t
k-I

We proceed by fixing the 14-vectors temporarily, and(

consider the probability densities of all quantities entering

into the decision statistic to be conditioned on these values.

Th'e- conditional probiabilities of detection arnl 1ai.se alarm will

be evaluated first, and thie condition will then be removed by

tak i ngi expectation values over the joint I"I, of the b.-v-s-ctors

WitLh the h-vectors £ixud, only the K1i scalar A-complonents are

rariduij, an(d we sh(w ) now, under this condition, that y and the
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y(k) a.rc Gaussian variables, that y is uncorrelated with the

y(k)L and that the latter have a covariance matrix with simple

properties.

Using the definitions of the y's and of the PH matrix

element which enters there, we can express these quantities in

the form

K

y = ?A Y ?A (
k=1

and

K

y(k) = ?A(k) - 7A(1)B( -

This represents the y's as linear combinations of the

A-components, and hence proves their conditional Gaussian

character. Moreover, the y(k) have zero mean in all cases, while

the conditioW al mean, written Eli, of y in the general case is

E[y=E•J=b

as a result of our choice of signal vector.

The linar dupendence of the y's on the P-comp)onents is

best cxpresse(d in terms of th(e quantities

q(k) m

and

Q(I~k) a ,(IOtj,, 1 (k),

wvhichA aru constants under the condi]tioning. Obviously,

K

' =?A " ?A 1 (k) q(k)
k=1
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and

K
y(k) = t(k) - L ?,,) Q(,k)

k=1

The q(k) may be considered as the components of a K-vector, q,

and the Q(i,k) as the elements of a KxK matrix, Q. The desired

properties of the y's flow from the following facts about this

new vector and matrix:

Qq=q

and

Q =Q

To prove the first of these, we write it out in component

form:

K K

The sum over i regenerates the BB matrix element:

K

(as happened when the denominator of X was expresed as a sum of

sqniares), and the result follows immediately. The idempotent

character of Q is proved in the same way. We also note that Q is

Hlermitian, and that its trace is N-I:

K
Tr(Q)

K

k=1

= Tr(IN._) = N - 1
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Note that we are dealing with the trace of a KxK matrix on the

left side here, and of (N-l)x(N-l) matrices on the right. All of

these results will be required in the following.

The fact that y and the y(k) are conditionally

uncorrelated now follows easily from the independence of the

A-components themselves:
K

Elyy(k)" - (q(I)IA(OIA(k))
K K

K

= - q(k) + q()Q(k,) 0-0

Next, consider the conditional variance of y:

KE, Iy-bI2 - 1 + Y' I-(k'I 2 .

Substituting for the q(k), we have

K KI~~~~~~~~~q(k)l2=••Iy,•( )%k) G-•,

".• = • j,-1•,= E*

and hence

E; jy-bI2 = I +

This last result is responsible for a significant simplification

of the statistics of the likelihood ratio test.
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Finally, we compute the conditional covariance of the

y(k). We use the notation 6(i,k) for the elements of the unit

matrix, so that y(k) can be written

K
y(k) = ?A() [5(1,k) -- Q(I,k)]

Using the independence of the A-variables again, we obtain

K
E y(k) y(n)* =J [6(l,k) - Q(I,k)] [6(in) - Q(I,n)]"

K
6(kn) -- Q(n,k) - Q(k.n)" + Y Q(I,k)Q(i,n)

Since Q is Hermitian and idempotent, we find the simple result

E y(k) y(r)* = 6(n,k) - Q(n,k)

The likelihood ratio test is now rearranged slightly to

r*ead

Kl~l > •o>_ ly~k)]•"
1 + EN 17 •o

In view of fact that the conditional variance of y equals the

denominator on the left, it makes sense to define a normalized

variable

Conditioned on the B-vectors, w is Gaussian and independent of

the y(k). It has a conditional variance of unity, and a

conditional mean value:
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b

"In the noise-alone case, the conditioning has no effect on the

"PDF of w. The sum over k is also given a name:

K
I Z Iy(k)I,

k=1

and the test is now written

1w1 2 > (1 0 - 1) T

"where the original threshold constant has been reintroduced. In

"fact, it is easily verified that our original likelihood ratio is

given by

S= +--T
We now turn to the properties of T. Given the B-vectors,

the joint PDF of the y(k) is zero-mean Gaussian with covc~r.ikiCC

matrix J:

J(ik) & 6(1,k) - Q(k,|)

The conditional characteristic function of T is therefore

4)1•)--- El ,A. }= lIt - lxi if-1

Since Q is idempotent, its eigenvalues arc either zero or

one, and from the value of its trace we see that Q must have

exactly N-1 unit eigenvectors. It follows that J has K+I-N unit

eigenvectors, the others being zero, and thus

Th(i) = (t - i)-onK+zr)
TIhis is the character'istic function of a chi-squared random
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variable, and the PDF of T is simply

(K-N)-

It is remarkable that the statistical properties of T are

independent of the actual values of the conditioning B-vectors,

and we can consequently drop the subscript on its PDF. Moreover,

T is statistically equivalent to the sum of the squares of K+I-N

independent, complex Gaussian variables, each of which has zero

mean and unit variance. If we let w(k), (k=l...K+I-N), be such a

set, then T is statistically indistinguishable from the sum

K+I-N
lw(k)12

The properties of the likelihood ratio test are therefore

identical to the properties of the simple test

K+I-N
Iwr > - 1) Iw(k)1.

wherez the w(k) are now also taken to be independent of w. 1:1e

probability of the truth of this inequality is still conditioned

on the li-vectors, but this conditioning appears only through the

quantity FB, which is contained in the conditional mean of w.

This equivalent decision rule represents the behavior of a

simple scalar CFAR test, in which the power in one complex sample

(a single radar hit), being tested for signal presence, is

compared to a threshold proportional to the sum of the powers of
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K+I-N samples of noise. This problem is quite familiar, and the

test just described is also a likelihood ratio test in the

corresponding situation. The performance of the scalar CFAR

detector is very simple, and in particular, its PFA is just

i) K+1-H

In this case, when the signal amplitude is zero, the conditioning

B-vectors do not appear at all, and hence this simple formula

gives the PFA for our original likelihood ratio test.

The probability of detection (PD) of the scalar CFAR test

is also well known, and in our case it depends on the conditional

SNR, which is the squared magnitude of the conditional mean of

w. In terms of the colored noise matched filter SNR, a, defined

earlier, and the quantity
1

r=
1 +

this conditional SNR is just ra. The factor r represents a loss

factor, applied to the SNR, and caused by the necessity of

estimating the noise covariance matrix. The PD of the CFAR

detector can be expressed in a particularly convenient way as a

finite sum( 4 ):

L
~~DE _--t ' 1)k G,(!Ic)ID k=, (L)P D =1 k 4

where 1, = Y-1-N. The function G which enters here is itself a

finite sum:
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k-1 n

Gk(y) = 0-Y E Y
n=O

In order to complete our computaton of the PD of the

likelihood ratio test, we must take the expectation value of this

conditional PD over the joint PDF of the B-vectors. These,

however, enter the final result only through the loss factor, r,

which acts as a fluctuation model for the signal. Unlike more

familiar fluctuation models, this one is characterized by a

factor lying in the range zero to one. The present situation is

similar to that discussed in the RMB paper, except that besides a

SNR loss, our test will suffer a CFAR loss as well, when compared

to a colored noise matched filter test in which everything is

known concerning the noise or interference.

Although the loss factor found Iiiie depends on the primary

data, through its B-component, while the RMB 'oss factor is a

function only of the secondary data, it turns out that the two

factors have exactly the same PDF. The proof of this interesting

result is deferred to Appendix A, in which the RMB loss factor is

also expressed in our notation, and the evaluation of the PDF's

of both these quantities is carried out in parallel.

The PDF shared by these loss functions is the beta

distribution:

•(r) - (N+L-1) H-2 L

LI (N-2)I r
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and the final expression for the PD of our test can be written

L

p-i= 1 - -L( 7wo~L L- -'k to qo

In this formula, the H-functions are the expected values of the

G's:

Hk(y) = fGk(rY) f(r) dr
f
0

These integrals are elementary, although not simple, and their

detailed evaluation is presented in Appendix C, where the result

"is also recast in a form more suitable for computation.

P.

p.i
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(6) NUMERICAL RESULTS AND DISCUSSION

The performaice of the likelihood ratio test depends only

on the dimensional integers, N and K, and the SNR parameter, a.

The latter is a function of the true signal strength and the

intensity and character of the actual noise and interference. Our

analysis deals with a very general problem, and nothing can be

said about the anticipated values of a. The ability of a system

to function effectively in interference depends principally on

the arrangements which have been made in its design to achieve a

gooe colored noise matched filter SNR in its intended

environment. These arrangements will usually take the form of

diversity of RF inputs in one form or another. An additional

requirement is the need to have inputs available from which the

actual noise characteristics can be estimated, and this is the

aspect of the problem which has been addressed here. In

particular, for given values of PD and PFA, we can determine what

SNR is actually required to achieve those values using the

likelihood ratio detectcr, and compare that number to the SNR

which wniild be adequate to achieve identical performance if the

noise covariance matrix were known in advance. The difference is

the peralty for having to estimate the noise covariance, and we

expect that penalty to vary sharply with the number, K, of

available secondary input vectors.

This penalty has two components: one due to the CFAR

character of the decision rule and another due to the effective
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SNR loss factor. The latter is expected to behave much as the

results of the RMB analysis would predict, based on the

statistical properties of the loss factor alone. The CFAR loss

will decrease as the value of K increases, and it may De expected

to depend largely on that parameter, while the SNR loss effect

depends roughly on the ratio of K to N.

These expectations are borne out by the numerical

consequences of our analysis, as shown in the accompanying

figures. In Figs. 1 through 4, probability of detection is shown

as a function of a, the SNR, for three detectors (PFA is fixed at

10-6 for these curves). The detector performing best is a

matched filter with known noise covariance, and the worst is the

likelihood ratio detector which, of course, is estimating the

noise covariance. The middle curve (dashed) in these plots shows

the performance of a simple, scalar CFAR detector using L=K+I-N

noise samples, and it differs from the behavior of the likelihood

ratio detector only in that the SNR loss factor has been

ignored. This detector is included in the comparison in order to

show how much of the degradation imposed by noise estimation is

due to each of the two contributing effects.

We note that doubling both K and N has little effect on

the portion of the degradation due to SNR loss, while the CPAR

part is reduced, simply because K is being increased. The curves

also show the significant improvement which results from

1-36



4 -J

- _ ---------- 0- .

I-)

(I) % - - L. if

00

to~ V) A

m1-3



LC) to

IAJI

0 C-4

0 co C-4

CLA__I 
.A.

> \ 4 - -.1- 38



CAC

_ _ -- - -
c%

00

1=4

44

2: - 4

C4.

(I) _ -- 39



_ I 00

-Jy

___ z

U)

- o- 4- k-l i
Z ~a)L U

N 0

LID'

N LILL.A

I-LA-
-J LIJ

o C)

U))*U) CA

0 0 C) 0 0 C



increasing the ratio of K to N. When this ratio is equal to five,

the SNR loss contribution to the performance degradation is about

0.9 dB, in agreement with the mean value of the SNR loss as

obtained from the beta distribution. Likewise, the CFAR

contributions are directly comparable with the ordinary CFAR loss

for a detector of nonfluctuating targets with no noncoherent

integration (i.e. a single radar hit).

The detector performance is characterized in a different

way in Figs. 5 through 8, which show the additional SNR required,

when estimating the noise covariarce, to achieve the same PD and

PFA as a matched filter for known noise. In all these figures,

the P.) is specified at 0.9, but the results will not depend

strongly on the chosen PD level, since the curves of PID vs SNR

arc nearly parallel for the two detectors. Three PW'A values are

represented on each plot. The independent variable for these

curves is the number of secondary vectors, and this variable

always covers the range 2N through 5N, for four different

values. It can be seern that SNR loss is riot strictly a fun.rtion

of th(. ratio K/N, but genera]ly decreases with increasing N, with

this ratio hold constant. The loss shown is the total loss, due

to the CFAI( effect and the 1SN< loss factor itself.

It was noted earlier that K, the number of seconrdary

vectors, must exceed N, the dimerisi or of each of the data

vecto)rs, in order to have a rioii-sirtguiar sample covariancu
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matrix. It is clear from the results just discussed that K must

exceed N by a significant factor if noise estimation is not to

cause a serious loss in performance. Since N is the dimension of

the total vector of data used for detection, the requirements on

the number of secondaries can become very large. In the radar

example mentioned in Section 2, N was the product of the number

of RF channels (M) and the number of pulses (J) in a coherent

processing interval, usually a large number. On the other hand,

our results are equally valid for the case J=l, which represents

a situation in which detection is based on the inputs from a

single pulse. In the latter case, the RF inputs could be the

elements of an adaptive array, and N might then be a much smaller

quantity.

In the original application, the reason that so many

secondaries are required is the generality of our formulation, in

which any interference covariance matrix is allowed. In the radar

example, this includes the possibility of arbitrary correlation

between interference inputs from pulse returns widely spaced in

time, although it is more realistic to assume independence (but

not statistical identity) of the interference inputs accompanying

distinct pulse returns. The fact that we have allowed correlation

between separate pulse return:., but still assumed that the

secondary data is independent of the primaries is somewhat

incons•istent, since the secondaries are takenr trom adjacent range
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gate samples. Instead, the present analysis should be viewed as a

formulation of the problem which does not preclude pulse to pulse

independence, but does not incorporate it as a feature of the

model.

If the problem is reformulated with pulse to pulse

independence as a specific assumption, there will be only Jt12

real unknown parameters for the noise matrix instead of (MJ) 2

parameters, which could be an enormous difference. One expects

the possibility of improved performance when fewer unknown, or

nuisance, parameters are being estimated, and one would also

expect that fewer secondaries would be required. This case is the

subject of Part II of this study, where it is shown that these

expectations are indeed borne out.

Returning to the general problem addressed in the present

analysis, it should be mentioned that the likelihood ratio

decision statistic can be reformulated in a way which

significantly reduces the number of matrix inversions (or

Cholesky factorizations) required. Suppose that a set of K+l data

vectors is specified, and one of these is singled out as a

primary vector for the likelihood ratio test. Since targets can

usually appear in any range gate output, one would next return

the selected vector to the data pool and choose another as

primary, and so on. Each stage requires the inversion of a

different NxN matrix, or K+l inversions to test for signals in
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all the vectors of the original set. It is shown in Appendix D

that one can form a single sample covariance matrix, using all

K+U vectors, then invert it (or factor it), and use this matrix

in all the K+1 tests for target presence in the individual range

gates.

Although the reformulated test is precisely equivalent t

the original, the question naturally arises as to the effect of

signal presence in more than one of the range gate outputs. This

is a problem in any CFAR, and it is usually minimized by the

application of some screening procedure to keep signal-bearing

vectors out of the set used for noise estimation. Such a

procedure would limit the applicability of the reformulated test,

except among the vectors which passed the screening test

themselves. Without screening, the presence of unwanted signals

in the secondaries will degrade performance. This degradaton

could be evaluated, but the PDF of the likelihood ratio decision

statistic would become much more complicated than it is without

unwanted signals, and this topic will not be discussed further

here.
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APPENDIX A THE PROBABILITY DENSITY FUNCTION OF THE LOSS FACTOR

The SNR loss factor derived in the text was expressed in

the form
I

1 +

where

E s .t -'.,.

Before discussing the PDF of EB, from which the PDF of r

follows easily, we express the RMB loss factor, p, in our

notation. From the RMB paper,

I (Wts)l'

p = ________

where M is the actual noise covariance matrix, s is the signal

vector, and w is a weight vector.ýv= k ý-'"^•

In this last formula, M is the sample covariance matrix of

the secondary data and k is an arbitrary constant. The loss

factor itself is the ratio of the conditional SNR of the output

of a filter which uses w as a weight, relative to the SNR of the

colored noise matched filter for known M. The conditioning in

this case corresponds to given values of the secondary data.

Choosing k=i/K, we obtain

'ýý= S`-l S

in terms of the S matrix used in the text, and then
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P = (,ts-l5 )B
(st M-1s) (Sts-1 MS-'s)

Note that p is unaffected if s is changed by a constant factor.

We now carry out the whitening transformation, as in the

text, and normalize the signal vector as before. The result is

(ity,-14.)2

(_ t 2j)

A unitary transformation is now applied to convert the signal

vector to the final one used in the text, and the matrices are

decomposed in the same way. This gives the simple expression

It is clear at this point that the PDF of p will be independent

of the actual covariance matrix M.

Using the Frobenius relations, we obtain

"02A -(,. + JA. P .)

AA)2/1 J N 9-2 YA

and therefore
1

where
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Note that the RMB loss factor depends on the secondary data only,

both A- and B-components, while r depends on the B-components of

both primary and secondary data.

We proceed to analyze the two loss factors together, and

begin by conditioning on the B-components of the secondary data

vectors, on which both loss factors depend. Then

K
YIU MU

is a constant matrix, positive definite and non-singular for all

sets of conditioning vectors (except for a set of probability

zero). We can therefore introduce the square root of this matrix

and define the vectors

- to -1/3 e(m = 7g "in

and

Y89- Ym A

With the conditioning, these quantities are zero-mean Gaussian

vectors; the former is a linear function of the elements of the

B-component of the whitened primary vector, and the latter is

expressible in terms of the secondary A-components:

KY e. -' = pl ,(k).-A(k)t ._

We use the subscript C to denote the present conditioning,

and compute the conditional covariance matrices of these vectors:
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arid

c to ti so W Yo3-

where

K K

K

Therefore

and the two 4-vectors are statistically equivalent under the

conditioning. They therefore share the Fame final PWD, when the

cornditioning is removed by averaging over the secondary

B-vectors. Since

and

this proves that the loss factors themselves are statistically

identical, and we continue with the loss lactor, r.

Since ýh is a Gaussian (N-l)-vuctor, the conditional

joint iPD1" of its components is

I1Q1 6(41 ty et)

The S matrix which enters here is itsfelf subject to the Wishart.
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PDF, which in the present case (in which the sample vectors are

of dimension N-I and the covariance matrix is equal. to the

identity) takes the form

fI(A) = IAI - -Tr(A)

C(N-1,K)

In this formula

C(N,K) = ,, --' H (K-n)I
n=1

is the Wishart normalization factor. The volume element for this

PUF will be written d(A). It is (N-I) 2 dimensional, ranging

over the diagonal elements and the real arid imaginary parts of

tne upper off-diagonals, of all positive definite matrices, A.

For our purpos-e only the normalization integral of the Wishart

PDF is required, hence we need not dwell on the detailed

propertie3 of this fascinating distribution.

Since tB depends on the conditioning data only through

the S matrix, its unconditioned PDF can be written

f (t."I = .- ...• IAII q-•,, f,,(A),d<A)

As in the text, we have replaced the exponential part of the

Gaussian PDF by a trace, this tine involving the open product

miat~rix
m aim r i x

When we substitute for the Wishart PDF in the exprcsson

above, we encounter the integral
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fIIAIIK+ 2 -- 0 -Tr[A(Iu-1 + 1)] d(A)

This is the same as the normalization integral for another

Wishart PDF, of dimensions N-i and K+1, and for which the

underlying sample vectors share the covariance matrix

A M (IM_, + )- .

The normalization factor for this slightly more general Wishart

PDF is just

C(N-1,K+1) I1A11K÷;

C(N--1,K+1) = C(N-1,K4I1)

+ wl t  [1 +

(the evaluation of the determinant uses the same lerma utilized in

Sactiorn:3) Combining these facts, we ootain the simple result

f (( -1Ko)[ + (colt)](÷)
f(•l) - # -1C(N-1,K)

K! ( 1 )-(K+

The remainder of the derivation is iderntical to the filial.

few steps given in the Appendix of the RMB paper. The norni of the
vector 4 B is interpreted as the square of the radial coordinate

in a (2N-2)-dimensional Cartesian space, a change to polar

coordinates is made, and the angular coordinates integrated out.

This p-ocuu5 yields the PDF of Ell, and then a simple change of

variable trovides the desired PDF of r:

' f~r) = KI (1- )H-2 rK+I--N
1(r) r! -- (-(K+I--N)I(N-2)I
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APPENDIX B. EVALUATION OF A DETERMINANT

In the main derivation in the text, and again in Appendix

A, a lemma was used which may be stated as follows;

I1A + abill = IIAII(l 4. btA-la)

where A is assumed to be nonsingular. Because of this assumption,

we can write

a = Ac

and factor out the matrix A, and hence its determinant. It

remains to be_ shown that

1IIH + cbtjl = 1 + btc

where IN is the NxN identity matrix. The desired evaluation

then follows by elimination oL c.

The above result is proved by induction; and it is obvious

for N=2. In general, the matrix

M • INt cb+

is decomposed as follows

M j* 1 v

where the first row and column have been singled out. In terms of

the (N-l)-vectors

and
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we can write

w = b ,_

and

L=¶ + Bt

Using the Frobenius relations again, we have

Of course,

M11 = -1 b;

and we also have

wvt = clb:bt

T Therefore

• " "-' \ 14• cI b1  /
CEt

S1 4 cib1

Assuming the validity of the evaluation for the N-i

dimensional case, we get

IIMII-M ( . ..m'

"i•11

and the lemma is Proved.
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APPENDIX C. COMPUTATION OF' THE PRORABILITY OF DEfECTION

The probability of detection obta:wied in the text has thc

for m

0

where L=K+!-N, a is the colored noise matched filter SNR and ko

is the likelihood ratio threshold parameter. The functionf; lk

are the expected values of the Gk, averaged over'the PDF of r,

the likelihood ratio SNR loss factorz

I

Hk(y) = E Gk(ry) f G,(ry)f(t')dr

0

Thv Gk functions are the sums

G,(y) - j
n0O

(which art- directly r.lated to the incomplete garmma function),

and the PDP of the loss factor is the beta distribution

f(r) = F(NL) (l-r)N -2 .L

The iormalizing facLor here is

LI (N-2)I

The false alarm, p•robability is given by the very simple

formula
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PFA=
(1 0

and it can be seen that PD reduces to PFA when a vanishes, since

Gk(O)=l. This implies that Hk(O)=l, and the result then

follows from the fact that PD becomes an incomplete binomial

sum.

To obtain an explicit solution for PD, we substitute for

the Gk(y) and write

k-i
HM(y) = > In(y)

n=O

where

I

In(y) -Y F(NL) f -ry (l-r)N-2 rL+n dr
f

Next, a binomial expansion provides the formula

N-2I() Y F(N,L) N-2) -i) y r-rr
p=O o

0

The integrals which enter here are elementary, and it

p)roves useful to define the functions

Tm(Y) E' y f Cry rmdr
0

In terrns of the T functions, we have

I",(y) :; Y-Y t r(NL) 7 N-2)(._,)PT (y)

arid it is easily verfied that
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oil-
<

t.(y) ._E~ LI IV- =o"

=l ey(I - G,,,+(,)).

The combination of these steps provides a formal solution

to our problem, but. the result obtained is not useful as a basis

for numerical evaluation. Especially when y is small, the direct

evaluation of the T functions for large and growing m-values

involves the products of factors, one of which is increasingly

large while the other is inceasingly small. The alternating sum

into which the T evaluations must be substitued further stresses

the numrerical precision of the computation,

To avo(id the altcrnating sum and its attendant numerical

problems, a different approach has been taken to the evaluation

of the I functions. In the integral which appears in the

definition of these functions, the variable of integration is

changyd from r to (1--r), and we write

nI (v• = J-- y)
-¶ -H'', ni

where

J,(y) Le F(N,L) J Y(1-r)L+nrN-2dr

"0

"The exponential is now expanded in a power series; and the

integral evaluated terin by term. Each of the integrals
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encountered is the normalizing integral of another beta

distribution, and is easily evaluated from the definition. The J

functions then appear as infinite series, which can be

expressed in the form

00

Jn(y) = Dn, T,(y,k)
k=O

where

KI(L+n)!
(K+n)ILI

and

Tn (y,k) Ba(N-2+R)l (K+n)l yk

n (N-2)1(K+n+k)I ki

These quantities are easily ,jnerated recursively, and the

series is terminated after a total of, say, k terms. The

truncation error is then

En(yk) = Dn Tn(y,s)
s=k

Go

= Dn Tn(yk+s)

It is not difficult to show that

L"(y,k) = D. T.(y.k) E Qn(k,s)
s-O

where

k -(N-2+k+s)l I4n-1,k)l Hls1
(N-2+k)l (1-+n~ký-sji T,÷r:)l



In our application K exceeds N, and this ensures that the Q

sequence decreases with increasing values of 1. Since

Qn(k,O)=l, we see that

&,n(Y.k) < D, Tn(Y~k) ey.

If a truncation error bound, r.:, is prescribed, then the series

for Jn(Y) can be terminated when

Dn T,(,y.k) <. & e-' -

and this provides a simple algorithm for the computation of the I

functions. The sum sequence of the I's is the sequence of H

functions, required in the final finite sununation for PD. The

other coefficients needed in this sum (the first formula of this

Appendix) are easily generated by recursion. This procedure has

been used to obtain the numerical results illustrated in the

text.
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APPENDIX D. ALTERNATIVE FORMULATION OF THE DECISION RULE

At first it seems unlikely that a test will perform as

well if the primary vector, thought to contain a signal

component, is included with the secondaries in the estimation of

the noise covariance matrix. A simple CFAR example will, however,

show that this can be an entirely reasonable procedure. Suppose

that K+l complex samples are available, denoted by z(k),

k=0,1,..K. A CFAR test for signal presence in z(O), using the

other samples for the estimation of noise level, would have the

form

Iz(O)r > C (Iz(1)1? +-- + Iz(K)I1)

whure the constant a is to be determined by the assigned value of

PFA. However, by simply adding

a Iz(o)l=
to both sides of this inequality, and then dividing through by

1+a, we find the equivalent form

Iz(O)Il > a - (lzo)12 + Iz(1)7 - + lz(K)I2
I+a.

All the samples now enter into the noise level estimate,

which can be used unchanged for tests of signal presence in each

of the other samples in turn. The performance attained by this

detector, and in particular the losses caused by the presence of

unwanted targets in the samples used for noise estimation, is
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identical to that of the original form of the test. Formulas for

the performance of such a CFAR detector, when unwanted targets of

various kinds are present in the noise estimate, may be found in

Ref. 4.

We expect that a similar reformulation is possible in the

present problem, and begin by returning to the analysis of

Section 3. The likelihood ratio test was expressed there in the

form

M II T lMin 11 "T, I0
b

where

(K+1)To = S +zt

and

(K+I) TI S + (z-bs) (z-bs)t

We now define

S - + z z

and note that this matrix is K+l times the sample covariance

matrix formed from all the input data vectors.

"Clearly, wc can express TI in the form

(K+1) Ti = + (z-bs) (z-bs)t -zt

and, of c.oursu,

(K+1) To = •

Next, we fecto-r out the new S-roatrix, and write
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(K4-1)T = S'I+ ab + cdt).

where

a S-•(z-bs)

b z-bs

and

d -z

The matrix ratio is now simply

T= IIN,+abt+cdtB,

IgT0 ItTo

and we can again use the lemma of Appendix B in the following

way. Let P be the matrix

then

III,, + abt + c dt II = P + cd1 II

Rif the same lemma,

II PII =I +(bta),

and it is easily verified that
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a bl

When these evaluations are used, we obtain

IL-1 =(1+(bt a))(1+(dtec) - dt a)(tc)

(1 + [(z-ba)t'S-'(z-bs)])(1 - (ZtS-1_))

+ [zt S -I (z-bs)] [(z- ý.)t S_ _'z]

After this expression is developed, it is a simple matter to

complete the square, much as was dlone before, with the result:

I___ - +.+Q b- n'- ) -
I!Toi Q

where

(a ~SS)(I - (Z¶ S"Z)) + I(S S Ztl

The minimization over b is now trivial, and we see that the test

assumes the form

>
Q - I(S1 -1Z)111

or

I(,' •-' z-'

This is the desired expression for the decision rule,

which is very much like its predecessor, but now involves the
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sample covariance formed from all the data vectors. By using the

evaluation

'-iS + zztf-L

= (Siciý + S--izztS-i s)-

it is not difficult. to recover the likelihood ratio test in its

original form.
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PART I I

(1) INTRODUCTION

In Part I of this study, a general problem of radar

detection was discussed which was characterized by the presence

of unknown non-stationary interference. The radar is assumed to

have a number of RV channels, and target detection is based on

their outputs for a train of pulses which form a coherent

processing interval. The methods of likelihood ratio decision

theory were applied to the derivation of a detection algorithm

for this problem. Arbitrary correlation was permitted for the

interference between different pulses, as well as between

different PF channels. A decision rule was derived in closed form

and exact expressions for the system performance were obtained.

In Part I1, the problem is reformulahed with the single

additional assumption that the interference is statistically

independent from pulse to pulse. The correlation properties of

the interference are still unknown, and are allowed to vary

Lrbitrarily f-rom pulse to pulse. The present discussion is

largely based on the methods and results of Pa,.t I, but the more

specific problem is r-ore difficult to solve, and we have not

obtained a closed form expression for the exact likelihood ratio

decision rule.
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An approximation to the likelihood ratio test statistic

has been obtained however, and this will be derived and discussed

below. The approximation appears to be a reasonable one, and the

resulting test reduces to the exact decision rule for a single

pulse, and also to the likelihood ratio test for the analogous

multiple-pulse problem in which the noise covariance matrices are

presumed known. The form of this test itself provides

considerable insight into the detection problem.

The exact probability density function (PDF) of the

approximate test statistic appears to be very difficult to

obtain. An approximation is developed, however, which contains

several of the features of the exact PDF, and expressions for the

probability of false alarm (PFA) and probability of detection

(PD) are derived for this approximation in the present report.

An essential feature of the analyses of both Part I and

* the present Part 11 lies in the assumed existence of so-called

secondary inputs which can be used to estimate the covariance

matrices of the interference. The samples from range gates

adjacent to the one being examined for targets are used for this

purpose, and it is worth specifying in detail the assumptions

made in our model regarding them. It is assumed that all external

sources of interference are sufficiently wide-band in character

so that, like internal noise, samples separated in time by the

duration of a (compressed) radar pulse are independent. The key
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assumption lies in the degree of non-stationarity which is

all(wed.

In the present model, we assume that the covariance

matrices of the total interference can be arbitrarily different

for samples separated in time by an interval as large as the

pulse repetiticn interval (PRI) of the radar. On the other hand,

the correlation properties between the RF channels are not

supposed to change so rapidly that those of successive samples

(separated by one pulse length) are widely different. The

non-stationarity of the interference is actually assumed to be

slow compared to the pulse length, but can be fast relative to

the PRI. Samples from range gates adjacent to the one being

tested for target presence can then be assumed to be

statistically identical to the latter, as long as they are not

too large in number, while for successive pulses, the covariance

matrices shared by this set of samples can be entirely

different.

This model is admittedly somewhat contrived, but if the

interference is allowed to change arbitrarily from sample to

sample, then noise covariance estimation is not possible, and

adaptive detection, in the sense studied here, will not be

feasible. It should be noted that the interference provided by a

group of sources with time-varying output levels does not result

in a completely arbitrary time variation of the covariance
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matrices, and represents an intermediate case not addressed

here.

The model used in Part I assumed statistically identical

secondaries, but allowed correlation from pulse to pulse in both

* primary and secondary inputs. This is not a good model of an

actual situation which might be encountered by a radar, but

should be viewed as a way of solving the problem in which the

pulse to pulse independence property is not explicitly employed

in the derivation of a decision rule. The results of Part I are,

however, perfectly applicable to the problem of detection using a

single pulse.

A brief summary of the following sections of this report

is given here. In Section 2, a likelihood ratio test is derived

for the simpler problem in which the interference corvariance

matrices are assumed to be known, although they may vary from

"pulse to pulse. This represents the limiting case of perfect

noise estimation, and the results provide useful insight into the

*problem of interest. The likelihood ratio decision rule for the

original problem is derived in Section 3, where an approximation

is introduced which is necesary to obtain a closed form for the

test. A number of properties of the approximate test are derived

in Section 4, and these tend to show the reasonableness of the

approximation made. The performance of this test is analyzed in

Section 5, where a further approximation is needed to obtain
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numerical results. The limitations of the analysis resulting from

this approximation are also discussed there. Numerical results

are included in Section 5, and a brief general summary and

discussion is presented in Section 6. Supporting analysis of the

final formula for the probability of detection and its numerical

evaluation are the subject of the Appendix.
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(2) TARGET DE;',ECTION IN KNOWN NO'N -zTATIONARY INTERFERENCE

In the detection problem addresseo in this study, a target

is sought in the samples correspond-ng to a single range gate,

while K other signal-free range gate ourpu-s aLe availaLle as

well. If K is extremely large and if all thes-e s-gnal-free

samples share the covariance matrix of tne pr-rar sa..ple, we can

use these secondary data vectors to determine en jcuirate

estimate of the noise covariance matrices for each pulse. In the

limit, these estimates become the actual covariances, and the

problem reduces to the detection of a target in the primary data,

in a background of interference whose statistical propetties are

completely known. The present section is devoted to the study of

this simpler problem, which is useful because it provides context

and a performance comparison for the more general problem, and

also makes a convenient vehicle for the introduction of some of

the notation required.

The inputs to the processor are all data vectors, of

dimension M, corresponding to the M RF input channels of the

radar. The sample vectors for a particular range gate (the one

being tested for signal presence) form a sequence, denoted by

zj, where j runs from 1 through J, and J is the number of

p ulses in the pulse train. The sum cf internal noise and external

interference is assumed to be a zero-mean, circular Gaussian

process, and its sample vectors for the jth pulse have the
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covariance matt i,

Eo zZj t M

The symbol E0 stands for expectation value on the 'noise-alone'

hypothesis and the superscript dagger represents the Hermitian

conjugate of a vector or matrix. For different pulses, the data

vectors are assumed to be independent, each pulse being

characterized by the corresponding covariance matrix, Mj. In

the present secton, all these covariance matrices are considered

to be known.

We use the subscript '1' to denote the 'signal-plus-noise'

hypothesis, and we characterize the signal component in the

following way:

E1 z j b a, s

where b is an unknown, complex scalar amplitude parameter, s is

an M-vector which represents the relative signal amplitudes among

the RF inputs, and the aj form a sequence of complex scalars

which describes the pulse-to-pulse variation in signal amplitude

and phase.

The signal direction vectLur, s, is normallized ac folio..S

(s s) 1

i.e. the sum of the absolute squares of its elements is unity. No

specific normalization convention is assumed for the sequence

aj. An example of the latter would be a Doppler progression:

a, = Cij 0
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where 6 is the phase change per pulse caused by target motion. It

is physicaLlJ reasonable to assume that s is unchanged from pulse

to pulse, b•.t the dnaiysis is easily modified to allow this

vector to be a finctioin of j.

The joint probauility density function (PDF) of the data

vectors under tne noise-"lone hypothesis is

where the double bar repn-ezent.s a determinant. There are no

unknown parameteLs in this PDF. Under hypothesis one, the joint

PDF is the same, except that zj is replaced by the quantity

zj - bajs in the exponent:

J _ -,zzd-bajs]t M11 [z,--ba s1)

Before maximizing over he unknown b, we form a likelihood

ratio and take its logarithat:

i(b) log fo(zil .... 1ZJ)

S•( ((zjt MJ-1 z) - [zj--buas]t Mj- 1 [z-bujs])

J J

-- -IbI3 jCaj' (sl M- 1 s) + 2 Re(b" >J u(st MJ- 1 ZJ))
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We introduce the inotation

2 (St M[- s)

and

-(S t M -1 Z1  (St M -1 Z)
uJ (st -It s) -AS2

and substitute in the last formula. The resilt is

I(b)= -bl 2 I A 2 oJ1 2 Rb+2e b Ah u U)

SAz Oaj* uI 12

r~l 1

J

- ] J k I lb - ---

j 2 ior[1

ZA2 U1 U1

The unknown parameter, 1b, is now chosen to make the

quadratic term in which it appears v'anish, and we have, simply

SA2  II 2

A •'J A or ,

Z--: Max i(b): = I-;' " j
b 2} j 12 al

Since the quantities in the denominator of this expression are

all known, the likelihood ratio test reduces to

J2
A > c o

Ustant.
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In this simple problem the likelihood ratio test is a 'uniformly

most powerful test', and hence it yields an optimum detector.

The quantities, uj, are recognized as colored noise

matched filter outputs for the individual pulses, normalized in a

particular way. In the absence of signal they have zero mean

values:

E0 uj = 0

but when a signal is present, we have

El Uj = b Uj

The effect of the denominator in the definition of uj is to

cause these matched filters to pass the signal components with

unaltered amplitudes.

The variance of the matched filter output is easily

computed:
1

Eoj -_ (stMj-l Eozlzj t Mj- s) = A- ,A j

and this expression gives meaning to the parameter, Aj, as the

inverse of the residual noise after the matched filter processing

(i.e. nulling) on each pulse. Another way of viewing the colored

noise matched filter processing is based on a decomposition of

each data vector into a scalar component in the signal direction

and an orthogonal component, of dimension M-1. The orthogonal

component is used to predict the noise in the signal component,

and this predictor is subtracted out. The variance of the residue

after subtraction is exactly the inverse of Aj.
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Combining the means and variances just obtained, we. see

that the signal-to-noise ratio (SNR) of each matched filter

output is just

(SNR)j =b12 A1
2 Juj12

and this is also the SNR of the jth term in the sum on which

detection is based. If we give a name to this sum:

J
w E=. Aj 2 uj ,j~1

then we have

E0 w= 0

J
El w, = b L Aj2 IolI2

j=1

and

J J

E o01Wl 2  •L Aj- Jijl2  Eo IUJ1
2  

- Z A 12  a1!2

j=1 j=1

The actual SNR of the likelihood ratio test is therefore the sum

of the individual SNR's:

J J
SNR lb!2  A A 2 lo12 Y(SNR).

j=1 j=1

This processor is simply a coherent integrator of matched

filter outputs, in which account is taken of the varying signal

amplitudes and residual noise variances of the individual

pulses. If the signal amplitudes are constant and the total noise
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"is stationary, th-3 processor provides a gain equil to J, the

number of pulses, relative to the SNR achieved on each pulse

after matched filtering (nulling). We will find analogues of all

these properties and parameters in the more general problem,

whose analysis begins in the next section.
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(3) DERIVATION OF THE LIKELIHOOD RATIO TEST

We now return to the problem described in Section 1 and

assume that the covariance matrices, Mj, are all unknown. We

also introduce the secondary data, consisting of K vectors for

each pulse, denoted zj(k), (k=l,..,K). These vectors have zero

mean under both hypotheses, and share the covariance matrix of

the primary vector for the corresponding pulse:

E zj(k) zj(k)t = Mj.

Under the noise-alone hypothesis, the joint PDF of the K+l

vectors associated with the jth pulse is

f oj[ 
- T r ( M j J - T O ) 

.K.+

where

/ K

I (Z Z ± zj(k)zj(k)t

k=1

This representation of the PDF exactly parallels that given in

Part I, and the corresponding expression in the signal-plus-noise

case is

fij~~ ~ ~ [z1jl....z()b e -Tr(M J-1 ITlj(b)) tK+l

where

K

Tip() 1 Z F b(z -bu s)(zF-baus)O + E zj(k)zj(k)' )
k=1

The signal parameters which enter here have the same significance

as in Section 2. The joint PDF's of all the data under the two
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hypotheses have the form of products:

and

J

fl(b) = T1I f1j(b)

To form the likelihood ratio test, each PDF is maximized

over the unknown parameters separately, and then a ratio is

computed. The unknown signal parameter, b, appears only in the

'number one' hypothesis, and we defer maximization over this

parameter until last, forming a ratio first. As in the similar

derivation in Part I, the maximization over each unknown

covariance matrix is simple; we obtain

Max ~ K+1Max foj =(~) Iol

and

Max =I K+1

With b still to be varied, the likelihood ratio, L(b), is a

product of factors, each raised to the power (K+1). It is

convenient to work with the (K+l)st root of the likelihood

ratio instead, and we write

L(b)
"and

1
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iJnI I I liti i . .... . .

i(b) f • i(b),

J=1
where

IIT1j(b)lI

The sample covariance matrix of the secondary vectors for

pulse j is given by the sum

Mj = K Ez(k) zj(k)l

and this quantity is also the maximum likelihood estimator of the

unknown covariance matrix for this pulse, based on the secondary

data alone. In terms of this matrix, we have

(K+1)Toj = KMj + z z t

and by the determinant lemma

I1A + abtll = IIAjI (1 + bt A-1 a)

for which a proof is given in Part I, we obtain

(K+1)M JjTojjj = KU ji•]jjj + L(zjt , Ml Z) .

By the same reasoning we find

M 1 [zj-bajs]t -M,-[z,-bajs])

for the signal-plus-noise case, and thus we have the ratio

Zj(b) 1I + [zj-bbjs]s M(-1 [zj-bo's]

11-15



In analogy to the quantities introduced in Section 2, we

make the definitions

-A1
2  (st - a)1

and

- (t f 1 Z1) _(St~(z

U s(St1) A 2

It should be noted that these new variables involve the estimator

of the covariance matrix, and not the unknown Mj itself. It is

also convenient to use the temporary notation

N (Zi t R,• JI7j)

With the help of these definitions we can make the

evaluation

~22
[z7bjs]tMj-[Zj--bojs] Nj - 2Refbojf Ajf uj + 1I b iuFi A3

=: A /ba 1  -- 
Nj - A j2

The likelihood ratio for the jth pulse is then given by

11 N~

4 m Y - 2j;12 4.A 2Iba.r ll•j KK--' 1

Next, we introduce the quantity

(N A- z

and eliminate Ntj, so that

ij ( ) - 1 1 146

.4 4. A l.oj i



The signif.cance oE Zj can be seen by def:.ning an inner

product as follows:

(a b) =- (atl M b)

Here, a and b are arbitrary complex M-vectors, and the

corresponding norm is

la~l - (M J-1 a)

This definition is possible because the sample covariance matrix

and its inverse are positive definite with probability one (so

long as K exceeds M, a condition we now impose). We can now write

NJ =1 tZJ 12

X 2 11 S112

and

This last expression is the component of zj in the direction of

the 'unit signal vector'

s

The portion of zj which is orthogonal to the signal

direction (in the sense, of this new inner product) is

(szj)

and in terms of this projection we obtain the desired expression
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•-.4

i K~ = N7- 
Fj

2sz) = Ilz±12.

1 112 5112J 11Z j 1

Thus K~j is the norm of that portion of the data vector which

is orthogonal to the unit signal vector. This separation of a

data vector into a 'signal' component and an orthogonal

component, relative to some noise-dependent inner product, will

appear again in connection with the coherent integration of

pulses.

It will be shown in a later section that Zj is exactly

analogous to the quantity EB of Part I, and also that the

variables

r +

represent SNR loss factors, described statistically by the Beta

distribution.

Returning to our likelihood ratio, we divide numerator and

denominator by (1 + Zj) and make use of the above definition to

obtain the formula

2'i•jebo j -ui2

The final likelihood ratio is the product of J of these factors,

maximized over b, and we note that rj, Aj and uj are
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sutticient statistics for the decision process. These scalar

parameters are, in turn, simple functions of the norms of s and

zj, and the inner product (s,zj), as defined above.

We cannot derive an exact likelihood ratio decision rule,

because the required maximization of the product of factors (over

b) cannot be carried out in closed form. However, we note that

the parameter K, the number of secondary data vectors, will

control the accuracy of the noise covariance estimate, and we

know that K will have to be large compared to M in order to avoid

significant SNR loss. For large K, the random variables Aj and

uj will tend toward the constants Aj and uj, as the sample

covariance matrix tends to the true noise covariance matrix. In

the same limit, the loss factors, rj, will approach unity

because of the properties of the Beta distribution to which they

are subject. Thus all the quantities in the likelihood ratio,

other than K itself, remain bounded as K increases and we will

assume that for practical values of K, both the numerator and

denominator of the likelihood ratio (for each pulse) take the

form of unity plus a small quantity.

Motivated by this reasoning, we make the approximation

J
1(b) = 13(b)

I=1

+ + rJAJ !UjI2

+19 --
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products of a unitary matrix and a new set of random vectors.

These new random vectors are statistically indistinguishable from

their predecessors, and it would only be confusing to introduce a

new notation for them. Tracing this transformation through the

inner products, we find that only the normalized signal vector is

changed: t is replaced by

where U1 is the unitary matrix characterizing this last

transformation. Any unit vector in the complex N-space can be

realized, as tl, by such a transformation. In particular, we

can cause ti to be a 'coordinate vector', for which a single

element is unity, the remaining (N-i) elements vanishing. It is

for this reason that the PDF of n depends on M only through the

meaning of the signal amplitude parameter, b. In fact, this PDF

can depend only on b, N and K, and hence the false alarm

probability of the likelihood ratio detector, namely

PFA = Prob1 > 770 ,

is independent of M, and this is the generalized CFAR property

claimed in section 1.

1-20
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x i + rj= AIfjU2

and

rJ12 'j[i2 2

J=I

The likelihood ratio test

> to

becomes

0 K0
X > tox K-•

which is equivalent to

to--Y>K- 0 X,

or, in terms of the original variables:

J

E rl A1
2o'u~2

which is the desired form. Some of the properties of this test

are derived in the next section.
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(4) PROPERTIES OF THE APPROXIMATE LIKELIHOOD RATIO TEST

The approximate likelihood ratio (ALR) test, derived in

the previous section, has a number of properties which suggest

that it is a reasonable detection procedure, in spite of the

approximation made in its derivation. Before discussing these, it

is perhaps worthwhile to point out just what is involved in its

actual implementation. The procedure requires the estimation of a

covariance matrix for each pulse, carried out by averaging the

open (dyadic) products of the secondary data vectors. Two sets of

linear equations must then be solved, which we may write in the

form

MJ WJ =S

and

M1%q = z

The three inner products are then given by

(stj- s) = (wJ s)

(St MZj) =(Wit zj)

and

(zJ M J-1 Z) = (q]t zj)
The variables rj, Aj and uj are, as we have seen, defined

directly in terms of these inner products, and only these

variables are needed for the construction of the ALR test.
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By far the greatest task is the sclution of the linear

equations, normally carried out by means of a Cholesky

factorization technique. A nulling scheme which employs the

colored-noise matched filter method directly, and which is

designed to compute new weights for each pulse, will have to

solve the first of the above equations to find the appropriate

weight vector. After factorization of the sample covariance

matrix, it does not require much extra computation to solve the

second equation as well. The inner products are, of course,

"simple complex sums, as are the sums over j which enter into the

test itself. Therefore, the implementation of the ALR decision

rule would require only a moderate increase in computational

complexity over such a matched-filter nulling processor.

From the form of the ALR test, and the definitions of

rj, Aj and uj, it can be seen that the test is unaltered if

the signal vector, s, is changed by a scale factor. Thus the

detection rule is not affected by our choice of signal vector

normalization. More obviously, the test is unchanged if the

sequence aj is multiplied by a common scale factor as well.

Finally, the test is invariant to a scaling of all the data

vectors, primary and secondary, by a common scalar factor. This

last represents a weak form of CFAR behavior. It will be shown

later that the test is not a true CFAR, in the sense that its

probability of false alarm (PFA) is completely insensitive to the
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actual covariance matrices of the noise on all of the pulses.

However, it will turn out that the test is approximately.a true

CFAR, and we will be able to get some idea of the nature of its

departure from the desirable true CFAR performance.

If K, the number of secondaries, becomes very large, the

ALR test passes over into the likelihood ratio test derived in

Section 2, for the case of known noise. This follows from the

convergence of the noise covariance estimators to the true

covariance matrix in this limit, and, as discussed before, the

convergence of the Beta-distributed loss factors, rj, to

unity. In the final form of the ALR test, given as the last

equation of Section 3, the summation over j on the right side

will remain finite as K increases, and hence this sum, divided by

K, will tend to zero. If the quantity

10

is then defined as a new threshold constant, the limiting form is

seen to be identical with the known-noise test of Section 2.

In the case of a single pulse the ALR test is exact, since

the approximation we have made is irrelevant in this situation.

This case is actually the same as the general problem treated in

Part I, since we have made use of no special structure for our

M-vectors. If we put J = 1, the ALR test becomes

32  --2  1 (1 ' rA 12

K U II-22)
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or

k rý 2!1i 2 > 0- 1

We have dropped the subscript j in these expressions.

Substituting for r, A and u, we obtain

i(St -I z)i2
S ....... .... > (10 - 1) (1 + E) ,

K (s! M_'s)

again without the subscripts. Finally, substituting for je, -

find

K (st SIi )2 10-I

which is identical to the decision rule derived in Part I.

This test can be put in another form which will provide an

interesting analogy to the multiple-pulse ALR decision rule.

Using the inner product notation introduced in Section 3 and the

definition of the orthogonal component of the data vector with

respect to that inner product, we can write the next to last form

for the single-pulse test as

----..... ... > ( z ) K + ( z , ,z ,)

Returning to the multiple-pulse test, we define a new inner

product, using square brackets to distinguish it, as follows:

J

[a,b] =-E r~a*b
j=i

Here a and b are arbitrary sequences of complex numbers, or
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J-vectors. Using this inner product, the ALR test can be written

,,] _ K + [u,]

Again we can separate the data vector, this time the

J-vector u, into two components relative to the signal' vector,

a, defining an orthogonal component as follows:

The norm of u is then the sum

[ lu] = ..[ ... + [ ,

and the ALR test reduces to

-~a 2 ~±~i-[ a]-1. > (i0 - 1) (K +* [-Ui,U-]L'

which stands in remarkable analogy to the single-pulse form of

the test, just derived above.

To procede with the analysis of the ALR test we follow the

procedure of Part I and introduce a change of variables, to

'whitened' coordinates. Suppose the actual noise covariance

matrix for the data vectors of the jth pulse is Mj. New

vectors are defined by the equations

1

J -MJ 2zJ
and

1

j(k) Mj -zj(k)
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The covariance matrix shared by all K+l cf these vectors is the

MxM identity matrix, and the same is true for the data vectors

for all J pulses. The sample covariance matrix of the whitened

secondaries is given by

K 1
1 2M Ik),k M 2
K ___ MJ2M jM

The signal vector is also changed by the whitening

transformation into a different vector for each pulse:
i

t j = M -2S

&nd here we see it would be very simple to allow the original s

vector to be a function of j. The ordinary norm of the

transformed signal vector is

(titt.) = (stMj-'s) = A.2

the quantity encountered in Section 2, which is the inverse of

the residual noise that would remain after nulling with a filter

matched to the actual noise.

In Part I we were able to choose a convenient signal norm

which made this quantity unity, since there was, in effect, only

one pulse. That choice cannot be made here, and hence a simple

norm has been chosen for s itself. The presence of the Aj in

our expressions will be the chief difference between the present

analysis and that of Part I. The evaluations that are made next

follow very closely those of Part I, and only enough detail will

be given to make clear the small differences. Besides the
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appearance of thý Aj, we are now working with tfle sample

covariance matrices themselves, instead of the S-matrices of Part

I, which differ by a factor of K.

We introduce the inverses of the whitened sample

covariance matrices:

Pj = a-I = MI 2M l-'Mi2'

and substitute the definitions in our three inner products. We

obtain

j 2 = (st Mj-s) = (t t YtJ)

(St Zj) = (tjty i

and

The new random vectors are, of course, still Gaussian, and

the secondaries still have zero means under either hypothesis.

The whitened primary vector has zero mean in the absence of

signal, and mean value

I
EIi = Mj- EIzj = buiti

under the 'signal-plus-noise' hypothesis. These variables are

thus completely characterized statistically, and we note that the

actual noise covariance:matrices, Mj, appear only in the new

signal vectors, the ti.

Following the method of Part I, we next make unitary

transformations, one for each pulse, which will leave all the
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Gaussian random vectors statistically unaltered except for the

mean values of the primary vectors. These mean values are

proportional to the transformed signal vectors, and we choose the

unitary transformations to make each signal vector proportional

to the 'coordinate unit vector' whose transpose is [i,0,...,O0.

Since the norms of the signal vectors are unchanged in this

process, the transformed tj will be given by

A~ ~

In this vector, the 'one' is a scalar and the '0' is an (M-l)

vector. We can think of these unitary tranformations as being

combined with the preceding whitening transformations (which were

ii cy •2s(e •a,• u~iq~ie), ~and 'hence we make no change in the

notation to reflect the unitary transformations.

We see now that the matrices, M-•, affect the statistical

character of the inner products only through the numbers, Aj, a

single scalar for each pulse. Moreover, these inner products are

sufficient statistics for decision, since the ALR test itself

depends on the data vectors only through them. The only other

parameters which enter the test are the signal amplitude

constants, the 0j, and we shall find that the test statistics

depend only on the products, Ajaj.

The data vectors and sample covariance matrices are now

decomposed into blocks, separating out the 'one' component,
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called the A portion, and the (M-1) dimensional remainder, the B

portion. Thus we write

.,j(k) = jA(k)1

SjB(k)
and

S[JtJAA AJAB]

"iJBA AJBI

with a similar decomposition for the inverse of the latter

matrix. These forms are substituted in the inner products, and

use is made of the Frobenius relations for partitioned matrices,

exactly as in Part I.

When this is done, it turns out that

FIJ = k (?JB• JBB- ?JB),

%,hich is the exact counterpart of rB of Part I. It follows that

the loss factors, i.e. the rj, all obey the Beta distribution

f(r) = 2)!L- L! (1-r)N-2 rL

where

LK ± 1 M

This last parameter plays the same basic role here as did its

counterpart before, but in addition to the number of secondaries,
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L now depends on the dimension, M, of the data vectors for each

pulse, instead of the total number; MJ, of data vectors which

enter in the detection process. This difference is due, of

course, to the more specific assumption made here concerning the

covariance structure of the interference, namely pulse-to-pulse

independence.

When all these substitutions are carried out, new

combinations of variables appear, which motivate the definitions
-1

Y -•A -
4 JAB 4 JBB IjB

and
yk(k) ?JAk) -/ JAB - k

These variables are the precise analogues of y and y(k),

encountered in Part I, and we also obtain the relation

K

"4 JAA - J4 3AB 43BI- "4 1BA :- K Z Y= k)12

Note the appearance of the factor 1/K in this formula, which

results because the left side is expressed in terms of the sample

covariance matrices themselves.

When conditioned on the B components of the primary and

"secondary vectors of pulse j, the yj and yj(k) are Gaussian,

and yj is independent of the yj(k). The KXK conditional

covariance matrix of the yj(k) has the same structure found

earlier; it is an idempotent matrix with L unit eigenvalues, the

remaining M-1 eigenvalues being zero. Conditionally, the means of
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the yj(k) are alTays zero, and that of yj is given in general

by

E =,EBI bAJUa

The subscript B denotes the conditioning, and obviously this last

mean is zero in the absence of signal. Finally, the conditional

variance of yj is related to the loss factor, as follows:

Ec3yj - bAj•a| 2  = 1 + S1 1r

In terms of these y-variables, it is easily shown that

A 1

and

A2 KAj
1Y/- Iy

k=1

The variables which enter into the three basic inner products

have now been written in terms of the y's and Ej, whose

statistical properties have been completely described. The

'square-bracket' inner products themselves are expressible in

terms of these quantities, and we find

* r 11yj12

3=1 rl E IYk)I
k-1

* J r1 AfIaj
2ll

[u~~crr j' ~ 1 juj12 K
=1 =E Y(k)Z

k-1

11-32

- - .. . . . . .- . . . C.

.Ky.t..-*,-:-".-- -, .r,- .
, a , ,.% --.*-.,*-2 .r A .' -i-* -.



and
rJ rA aj y

j ~J=1• lyý(k)12
k=1

We have already seen that the ALR test takes a very simple form

when written in terms of these inner products.

Following the analysis of Part I, we find that the sums
K

TJ )L JyI(k)I?.

are Chi-squared random variables, independent of conditioning on

"the B-components, and each Tj is subject to the PDF

Lif(T) ... . e-
(L-l)!

Note that the number of degrees of freedom is related to L and

not K, because of the mutual correlation of the yj(k). We now

introduce new, normalized random variables instead of the Tj,

namely

TJ
J LE

These new variables have unit mean values, and each has variance

equal to l/L. These properties are central to an approximation we

shall make in the next section, in connection with the performance

of the ALR test. Like all variables relating to different pulses,

the Tj are mutually independent.
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3.-qain following Part I, we replace the yj by new

variables, " which are defined so that they have unit

varian:e, conditioned on the B-components:

y r I y

(+

*Lno" loss factors now appear in the conditional means:
1

EBwi = brj2Al ja•

To express the 'square' inner products in compact form, it

is natural to use the definition

#aj = r i A i a .

These quantities are random variables, but they are dependent

only on the B-components of the data vectors. This last

definition allows us to write

EB Wj - j

and the inner products are then given by the equations

J

U T
j=1

K [a,a] 7' •

and

jjWj
J wL

The ALR test itself is therefore statistically equivalent to the

test
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j=1 Tj

Of course, the transformations we have made were based on the

actual noise covariance matrix, and the form of the test just

given will be used only to study its performance; it is not an

alternative representation to the original form, which was

written in terms of the observables themselves.

Conditioned on the B-components of the whitened vectors,

the vj are constants and the wj are simple Gaussian

variables. We note that the conditioning is represented now only

by the presence of the loss factors, hence we can interpret the

conditional probabilities as being conditioned on a set of values

of these J independent random variables. Besides these, only the

products Ajaj appear in the test, and also in the

statistics, since the conditional means of the wj are equal to

the numbers vj, which are proportional to these same products.

Because of the presence of the products Ajaj in the

decision rule, it is not a true CFAR, in the sense that the

probability of false alarm is not totally insensitive to the

actual noise covariance matrices. However, the PFA is invariant

to any permutation of these numibeis, since the randGm variables

which enter tie test are independent from pulse to pulse and

statistically indentical for different pulses. The PFA is also
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unchanged it all the Aj are changed by a common factor. We

conclude that the PFA depends on the variability of the sequence

of products, Ajj in some normalized way, such as the ratio

of standard deviation to mean of these numbers. It seems likely

that the dependence of the PFA on this variability i~s not strong,

* and in the next section an approximation will be introduced which

* causes this dependence to disappear entirely. This approximation

* ~can be used to set a unique threshold for the test., for a given

* assigned PEA, and the actual PEA will then vary somewhat from

* this assigned value, according to the actual pulse to pulse

variations in the level of the residual noise after nulling.
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(5) PERFORMANCE OF THE APPROXIMATE LIFELIHOOD RATIO TEST

To evaluate the performance of the ALR test exactly, it would be

necessary to obtain the PDF of the quantity

Tj±L 1J2 1_ ' LW"
•- "T io 1 +

J=1 .1 =1 0

The probability that the detection threshold is exceeded is then

equal to

Prob(t>O)

Evaluation of this probability under the noise-alone hypothesis

yields the PFA of the decision rule, and under the signal-plus-

noise hypothesis we obtain the PD. We have shown that the Tj

are independent, normalized Chi-squared variables, independent of

any conditioning, and that the wj are independent. The wj are

also Gaussian, when conditioned on the loss factors contained in

the uj. Finally, the loss factors themselves are independent

and satisfy the Beta distribution given in Section 4. We would

like to be able to evaluate the conditional PDF of F, and then

remove the conditioning by taking the expectation value of this

probability with respect to the loss factors. This procedure was

feasible for the general problem analyzed in Part I, but appears

to be intractable here.

It was pointed out in Section 4 that the PDF of the

Tj has mean value unity and variance equal to l/L, where
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L=K+l-M. Since L will have to be large ccmpared to unity in order

to control SNR lcsses (i.e. to keep the loss factors close to

unity), it may be expected that the Tj will not differ greatly

from unity themselves. A family of PDF curves for this normalized

Chi-squared distribution is presented in Fig. 1, for various

values of L. It can be seen that the PDF becomes relatively

narrow and quite symmetrical about the mean, for values of L in

excess of about 50. This suggests making the simplifying

approximation

in the expression for •, which then becomes

14j* 1

This approximation greatly simplifies the PDF of E, and it

is only this simplified form that will be discussed here. The

penalty associated with the simplification is, of course, a

* failure of our results to describe all aspects of the original

problem. In Part I it was shown that the likelihood ratio test

derived there was equivalent to a simple CFAR detection process,

in which the threshold was estimated from secondary data, and the

target exhibited a Beta-distributed fluctuation. The threshold

estimation in that problem was represented by a single variable

exactly like one of our Tj. The resulting performance
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analysis (in Parn. I) also showed that the total SNR loss. could be

recognized as the sum of two contributions: one due to the target

fluctuation and another due to the threshold estimation. The

latter effect, which provided the CFAR behavior, accounted for a

SNR loss very close to the standard CFAR loss for a non-

fluctuating target and threshold estimation by summation of noise

sample powers. The number of terms entering in this summation is

exactly L. In the present problem there is a Tj factor for each

term in the sums which enter in the decision statistic, since

noise estimation is carried out for each pulse. Each pulse will

then show a CFAR loss, and we expect that the overall performance

of the actual ALR test will have a CFAR loss of the same order of

magnitude (in db) as that for a typical pulse. It is this aspect

of performance that will not be described by our results when the

simplifying approximation is made.

In the approximating expression for ý we can interpret the

wj and uj as components of complex J-vectors and, as before,

make use of the inner product notation. Then we have

_ I/.jlz =

and

Iwj42 = w

11-40



In this J-dimensional complex vector space, we now introduce new

vectors, obtained from w and v by means of a unitary matrix U:

w'--OUw

and

Inner products and norms are unchanged by this transformation,

and we can choose U so that P' is aligned with a coordinate

vector, just. as was done in a different space in Section 3. In

particular, we can choose U so that

The norm of P cancels out in the expression for C, which is now

simply

12 to-- 
I

=A, 1W, L +7 Jw'f •1

iW -- j '(L±

We define

so that

J I

•'= Iw'112 - (•o-1)Y•=1w'1 2 - (10-1)L

and note that the probability of exceeding the detection

threshold is equal to

Prob(t'>O)
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The components of w' are independent and Gaussian, given

the loss-factor conditioning, and each has unit variance. The

conditional mean of the vector w' is

Esw'= bi',

and therefore all components of w' except the first have zero

mean. The latter component has mean value

b= 2= a

where

a = bi[Aj = Ibl' ýý r,41'al '~j
J=

This last parameter is the basic signal parameter of the

simplified problem, and we see that it is just like the SNR of

the known-noise test (see Section 2) except for the presence of

the loss factors, the rj.

In the noise-alone situation, a = 0, and the simplified

test performance depends only on L and the threshold parameter;

it is in this approximation a true CFAR. When a signal is added,

its presence is felt only through the parameter, a, and we shall

calculate the conditional PD for this case, as a function of a.

It will not be possible to average this PD over the PDF of a, in

order to remove the conditioning, because of the difficulty of

dealing with a weighted sum of Beta-distributed variables. Again

we appeal to the results of Part I, where it was shown that the
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exact SNR loss caused by the loss factor was very similar to the

expected value of the loss factor itself. We therefore note that

J

Ea = Er Ib12 AI AI2 lkI2

where

Er = J'rf(r)dr

0

L+1 K+2-N

N+L K+1

is the expected loss. The expected value of a is thus equal to

the known-noise SNR value times the expected value of a typical

loss factor, as found from the Beta distribution.

It remains to derive the probability of threshold crossing

for fixed a, from the simplified version of the test statistic.

We define the characteristic function of the random variable V':

E e

and note that the desired probability can be expressed as an

integral in the complex X-plane, as follows
--- is

The interchange of order of integration required to obtain this

result is made valid by the displacement of the contour below the

real axis in the complex plane. The characteristic function

itself can be expressed in the form

) = e-(-1)LX 4(X))%[-(10-1) ]N
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V.

where

and
2z(\) -E e ix• TJ-2

is the characteristic function of the sum

J=

Since S is the sum of the squares of (J-l) complex

Gaussian variables, each with mean zero and variance unity, it is

a Chi-squared variable of 2J-2 degrees of freedom, and its

characteristic function is therefore

$2(X) =(1 -i)- -)

The random variable w' 1 is conditionally Gaussianr with unit

variance and a mean squared value of a, hence its characteristic

function is

a

e
1-i•

Substituting, we obtain
a

e 1i¢(X) = e-,a - i(I°-1)La

(1 - + i(I0-1) -1

The final complex integral is evaluated in the Appendix,

where the desired probability is derived as a series of Marcum

Q-functions. A numerical analysis of this series is also given
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there, on the basis of which the figures of the present section

have been produced. When there is no signal present, the

characteristic function simplifies greatly, and the contour

(closed in the lower half plane) includes only the simple pole at

= -i. The residue at this pole is easily evaluated, with the

resulting formula for the probability of false alarm

PFA = ( 1 /o)J1 e -•1)L

For a single pulse, this formula and the corresponding

formula for PD and identical to the expressions for PFA and PD

for conventional detection with a single radar hit. This is to be

expected, since they are conditioned on given loss factors, and

the CFAR effect associated with threshold estimation has been

eliminated by our simplying approximation.

The general character of the formulas is illustrated in

Figs. 2 through 7, in which PD(a) is plotted vs a, for several

sets of values for the parameters L and J. In all cases, the PFA

has been set to 10-6. The dashed curves on these plots

represent the PD vs SNR for a conventional detector using a

single radar hit, or Marcum 's Q-function for N = 1. The two

curves are extremely close when J and L are large, and when the

number of pulses is large, they are relatively insensitive to L.

We conclude that the performance of the ALR test can be expected

to be very similar to that of the known-noise test of Section 2,

with two additional losses: a CFAR loss typical of the parameter
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L, and a SNR loss which is essentially that predicted by the Beta

distribution for a single pulse.
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(6) SUMMARY

It has been the intention of this two-part study to

discuss the problem of radar operation in non-stationary

interference, from the point of view of final target detection.

Those aspects of the radar design which make it possible to

achieve a satisfactory degree of interference rejection are not

analyzed here, but are taken as given. We refer here to the

provision of an adequate number of auxiliary RF channels and the

means to produce precisely controlled weighted sums of their

outputs. The choice of these weights is often discussed in terms

of interference rejection, or nulling, on a pulse by pulse

basis. By viewing the problem as one of target detection,

utilizing the returns from a sequence of pulses which form a

coherent processing interval (CPI), we have obtained a more

complete decision algorithm. This algorithm contains both the

rule for choosing the auxiliary weights and the procedure for

combining the weighted outputs for each pulse to form an

integrated resultant for target declaration.

Although the total interference is modeled as Gaussian

noise, the correlation properties of this interference are

presumed to be unknown. Detection is only possible if these

correlation properties can be estimated, and for this purpose we

have assumed the availability of other data, namely the outputs

of adjacent range gates, which are taken to be signal free. The
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important additional assumption is made that the interference

present in these other data is independent of, but statistically

identical to that of the main range gate in which target

detection is attempted. They can therefore provide a valid data

base from which the covariance matrices of the interference can

be estimated.

In this analysis, the available input data has been

characterized statistically and the methods of statistical

deqision theory have been applied to derive a detection

procedure, based on the totality of original inputs. The

resulting procedure can be considered to have three components,

namely covariance estimation, interference rejection and coherent

integration. The first two components of this algorithm are in

agreement with standard procedures. Covariance estimation is

accomplished by means of the sample covariance matrix of the

secondary (target-free) data, and interference rejection is

performed by sample matrix inversion and the application of the

corresponding colored noise matched filter weights. The third

component of the decision procedure is a form of weighted

coherent integration of all the pulses of the CPI, in which the

weights are dependent on estimates of the residual noise level

after interference rejection on each individual pulse. It was

this aspect of the problem that was of most interest at the

outset, although it is reassuring to have the eminently
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reasonable and conventional noise estimation and interference

rejection procedures appear as derived results from the theory.

In Part I the interference was allowed to have arbitrary

correlation, not only among the multiple RF input channels, but

also among all the pulses of the CPI. Because of the great number

of unknowns this entails, the number of secondary data inputs

required for noise estimation must be very great. On the other

hand, due to the generality of the formulation, an exact decision

rule was obtained, together with an exact evaluation of its

performance. The latter was given in terms of probability of

detection and false alarm, as functions of the system

parameters. Since no special structure was assumed by which the

data from separate pulses could be distinguished, all these data

were, in effect, lumped into one input vector in which a target

is sought, and a set of secondary target-free vectors for noise

estimation. Thus, by a suitable re-interpretation, Part I can

also be said to deal with the problem of target detection based

on a single pulse.

In Part II, the multiple pulse problem is specifically

treated, with the additional and reasonable assumption that the

interference is independent from pulse to pulse. The correlation

properties of this interference are otherwise totally unknown,

and must be estimated from the target-free inputs. The number of

these secondary inputs needed to assure adequate performance is
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now much smaller, being related to the number of RF channels

themselves, and not to the product of this number and the number

of pulses, as in the former case. On the other hand, the analysis

is inherently more difficult, and two distinct approximations had

to be made to obtain useful results. The first was an

approximation to the decision rule itself, which seems to be

justified not only by the quantitative arguments made in its

selection, but also by the reasonable character of the resulting

decision rule, the approximate likelihood ratio (ALR) test. The

other approximation was made in the performance analysis, as a

result of which these results are somewhat incomplete. The

limitations of this analysis were discussed in section 5, where

the insight gained from Part I was used to assess their probable

impact.

The general conclusions of the study are best expressed in

terms of the performance of an idealized radar which uses the

same primary inputs, but has the advantage of knowing the

correlation properties of the total noise. This radar can

therefore dispense with the secondary inputs of the real system.

The decision procedure for the idealized case, derived in Section

2, consists of interference rejection on each pulse, followed by

a weighted coherent integration of the pulses of the CPI.

Interference rejection is based on the known noise covariance

matrices, and the integrator weights are inversely proportional

11-56



to the residual noise levels after this portion of the

processing. This detector could be described as a conventional

nulling processor applied to each pulse, followed by a colored

noise matched filter which performs integration over the CPI. If

the external interference is nulled well below the internal

noise, the integrator weights will be equal, and the second

portion of the processor becomes a simple integrator. The

advantage of using weighted integration over the CPI, compared to

the use of constant weights, will depend on the residual noise

levels and their variation from pulse *to pulse. No general rule

can be given for the performance gain in this case, but it will

generally represent an improvement, relative to the use of an

incorrect set of weights.

In the actual radar processor, noise estimates are used,

both in the nulling of individual pulses and in the establishment

of the final detection threshold. The use of estimated covariance

matrices in the nulling process results in a loss of signal to

noise ratio on each pulse. This loss has been shown to be

statistically identical to that derived by Reed, Mallett and

Brennan, in a well-known paper(3). The relationship between

this SNR loss and the number of secondary inputs (range gates in

our case) is well understood, on the basis of the Beta

distribution to which these losses are subject. The seco:.d use of

noise estimation relates to the normalization of weights for the
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coherent integrator, and the final detection threshold itself.

The threshold estimation provides an approximately CFAR detection

test, and also leads to a CFAR loss in performance. Because of

the approximations referred to already, the CFAR loss is not

accurately assesed by our results, but arguments have been given

that it should not be large. It has also been shown that th;.s

loss should be approximated by the loss of a simple linear CFAR

detector, whose threshold is based on K-M+1 noise samples, where

K is the number of secondary inputs and M the number of RF

channels of the actual system.
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APPENDIX EVALUATION OF THE APPROXIMATE DETECTION PROBABILITY

In Section 5 an expression was derived for the approximate

probability of detection, conditioned on given values of the loss

factors. This probability was expressed as the contour integral

Prob(t;'>O) = PD(a) f 4j---

where

-i(Wo-1)LX + -
OW) e--a e

(1-ix)[1 +

The detection probability depends on the conditioning only

through the signal parameter, a, defined in Section 5.

For a > 0, the integrand has an essential singularity when"

A equals -i, a simple pole at the origin and a pole of order J-1

at i/(Z 0 -l). The path of integration is completed in the lower

half plane and then shrunk to a small circle about the essential

singularity. We can therefore write

PD(a) = 2-i

where the contour is a small circle, now enclosing the point -i

in a positive sense.

We make the definition

-y (iO-1) L

and the change of variable

X -i(0-0
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which brings the singularity to the origin. The result is
a

-a-y f eyLt+ 4 ds

PD(&) -t (--)

For a = 0, the singularity at the origin becomes a simple

pole, and the residue easily yields the formula for PFA given in

Section 5. In general, the integral will not yield a closed form

answer, and a series expansion is required. The difficulty is

caused by the factor exp(yt), which causes another essential

singularity at infinity.

We make the following expansion

S 1(J,+m-2)(iol)mtm

whose convergence is assured by the fact that the magnitude of t

is constant and arbitrarily small on the contour. Then we find

J- •J+m-2) R:)X

PD(a) to M=JO M2( 10

×e.-y eyt+!- tm-ldt

27ri Jf1

The contour integrals now remaining have been discussed in

detail in Ref. 1, in relation to the Marcum Q-function. Let

fN(u,a) a e`&- (LI)N IN12 )

and
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FN(y,a) s f fN(u,a)du

Y
Then FN is equivalent to Marcum's Q-function, the probability

of detection after non-coherent integration of N hits. The

parameter y is the normalized threshold and a is the normalized

total (i.e. integrated) signal to noise ratio.

In Ref. 1 it is shown that

e -a -~ yf e t+ i t mdt_ _ _- I - m +I(a 'y) ;m 9 O

27ijt1t F_m(Y,a) ; m<O

where the evaluation for non-negative m has been made by

replacing the variable of integration, t, by 1/t. Using this

result, we obtain

PD(a)--• FI(y,a)

+ _I) -1 J(1+m-2)( [1 - Fn(a,y)]

When a equals zero, this formula reduces properly, since

FN(O,y) = 1

and

FN(Y,O) = -Y

The resulting expression for the probability of false alarm,

(1F _L J-1 e-(10--1) L
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I,,

is easliy solved for to, given PFA, by the Newton-Raphson

method'.

For J = 1, the detection probability is simply

PD(a) = F1 (y,a)

since all the binomial coefficients vanish in this case (no

!- expansion was necessary for J = 1). This formula describes the

detection performance of a simple coherent integrator, with total

SNR equal to a and fixed threshold, and we see that the CFAR loss

is. not accounted for, an expected consequence of the use of our

simplifying approximation.

For other values of J, and in particular for large J, this

Sformula looks quite different, since (Yo)-(J- 1 ) will be a

small factor, and many terms of the series will contribute. As

the results presented in Section 5 show, however, our formula

produces a rather conventional PD vs SNR curve for a wide range

of values of the parameters, L and J.

Numerical results are obtained by truncation of the series

and the use of a truncation bound, which will now be derived. We

write the series in the form

P 0 (BL) + %T- +1

where

T m = (J+r-2)( LO-) m[ - Fm(ay)]
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is the general term of the series and cM is the error of

truncation at the Mth term:

FTm.

We now make use of the identity

FN(x,y) = FN.I(x,y) + f N(XY)

which follows easily from the integral representation given

above, and which implies that the sequence FN(a,y) increases

monotonically with N, since the PDF fN is necessarily

non-negative. The factors

11 - F"m(ay)]

then decrease monotonically, and we shall use this property to

write

~ [ -1 , F.m(ay)]• (J+m2)()

After replacing the index m by M+m, we find that the

inequality becomes

CM < 1,- FMi(a.y)]( loI)M(+12

where S stands for the series

S• o(J+M-r)!+m (tr o -I

But

11-63



S L(J+M+m-2) (0I1

(Jo M m 2)('0o

=(1-mi ) (M- =J+m)I\

and hence

CM < [1 - FM(a,y)]J+M-2)(iO-1)U = 4oMTT•

The truncation bound is therefore easily computed along with the

general term of the series, using recursion for the binomials and

simple powers, and Shnidran's algorithm( 2 ) for the Marcum

functions. This procedure has been used to produce the figures of

Section 5.
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